Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 357
Filtrar
1.
J Ethnopharmacol ; 329: 118161, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599474

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Kai-Xin-San (KXS) is a classic herbal formula for the treatment and prevention of AD (Alzheimer's disease) with definite curative effect, but its mechanism, which involves multiple components, pathways, and targets, is not yet fully understood. AIM OF THE STUDY: To verify the effect of KXS on gut microbiota and explore its anti-AD mechanism related with gut microbiota. MATERIALS AND METHODS: AD rat model was established and evaluated by intraperitoneal injection of D-gal and bilateral hippocampal CA1 injections of Aß25-35. The pharmacodynamics of KXS in vivo includes general behavior, Morris water maze test, ELISA, Nissl & HE staining and immunofluorescence. Systematic analysis of gut microbiota was conducted using 16S rRNA gene sequencing technology. The potential role of gut microbiota in the anti-AD effect of KXS was validated with fecal microbiota transplantation (FMT) experiments. RESULTS: KXS could significantly improve cognitive impairment, reduce neuronal damage and attenuate neuroinflammation and colonic inflammation in vivo in AD model rats. Nine differential intestinal bacteria associated with AD were screened, in which four bacteria (Lactobacillus murinus, Ligilactobacillus, Alloprevotella, Prevotellaceae_NK3B31_group) were very significant. CONCLUSION: KXS can maintain the ecological balance of intestinal microbiota and exert its anti-AD effect by regulating the composition and proportion of gut microbiota in AD rats through the microbiota-gut-brain axis.

2.
Acta Cir Bras ; 39: e392324, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38629654

RESUMO

PURPOSE: Patients have been severely suffered from cancer associated pain, and pancreatic cancer is the most severe form of cancer associated with pain. There are very few options available to manage it. The present report evaluated the effect of 5HT2A on pancreatic cancer associated pain. METHODS: Pancreatic cancer was induced by injecting SW 1,990 cells (~3×106 in a 20 µL suspension) into the pancreas and formed a 2-3-mm vesicle using an inoculator fitted with a 26-gauge needle in BALB/c-nu mice. Survival rate and body weight of the mice were observed. Pain behaviour testing was performed at the end of each week (third and fourth week) after surgery. Inflammatory mediators and HDAC 2 proteins were determined in the spinal tissue using quantitative real-time polymerase chain reaction. RESULTS: There was improvement in the survival rate and body weight in 5HT2A antagonist treated group than pancreatic cancer group of mice. Moreover, 5HT2A antagonist ameliorated the alteration in pain behaviour of pancreatic cancer mice. mRNA expression of HDAC2 and level of inflammatory cytokines were reduced in the spinal tissue of 5HT 2A antagonist treated group than pancreatic cancer group of mice. CONCLUSIONS: Data revealed that 5HT2A antagonist ameliorates pain associated with pancreatic cancer mice by HDAC inhibition and inflammatory cytokines. The result of investigation supports that modulation of 5HT2A receptor could be used clinically to protects neuropathic pain in pancreatic cancer.


Assuntos
Dor do Câncer , Neuralgia , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Dor do Câncer/tratamento farmacológico , Dor do Câncer/prevenção & controle , Modelos Animais de Doenças , Citocinas , Camundongos Endogâmicos BALB C , Neoplasias Pancreáticas/complicações , Peso Corporal
3.
Talanta ; 275: 126001, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38642545

RESUMO

The sensitive and stable detection of trace heavy metals in liquid is crucial given its profound impact on various aspects of human life. Currently, nanoparticle-enhanced laser-induced breakdown spectroscopy (NELIBS) with dried droplet method (DDM) is widely applied for heavy metals detection. Nevertheless, the coffee ring effect (CRE) in DDM affects the stability, accuracy, and sensitivity of NELIBS. Here, we developed a slippery surface-aggregated substrate (SS substrate) to suppress the CRE and enrich analytes, and form a plasmonic platform for NELIBS detection. The SS substrate was prepared by infiltrating perfluorinated lubricant into the pores of PTFE membrane. The droplet, with targeted elements and gold nanoparticles, was dried on the SS substate to form the plasmonic platform for NELIBS analysis. Then, trace heavy metal elements copper (Cu) and manganese (Mn) were analyzed by NELIBS. The results of Cu (RSD = 5.60%, LoD = 3.72 µg/L) and Mn (RSD = 7.42%, LoD = 6.37 µg/L), illustrated the CRE suppression and analytes enrichment by the SS substrate. The results verified the realization of stable, accurate and sensitive NELIBS detection. And the LoDs succeeded to reach the standard limit of China (GB/T 14848-2017). Furthermore, the results for groundwater detection (relative error: 5.92% (Cu) and 4.74% (Mn)), comparing NELIBS and inductively coupled plasma mass spectrometry (ICP-MS), validated the feasibility of the SS substrate in practical applications. In summary, the SS substrate exhibits immense potential for practical application such as water quality detection and supervision.

4.
PLoS One ; 19(4): e0289906, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635813

RESUMO

The COVID-19 outbreak led governmental officials to close many businesses and schools, including colleges and universities. Thus, the ability to resume normal campus operation required adoption of safety measures to monitor and respond to COVID-19. The objective of this study was to determine the efficacy of wastewater-based epidemiology as a surveillance method in monitoring COVID-19 on a college campus. The use of wastewater monitoring as part of a surveillance program to control COVID-19 outbreaks at East Carolina University was evaluated. During the Spring and Fall 2021 semesters, wastewater samples (N = 830) were collected every Monday, Wednesday, and Friday from the sewer pipes exiting the dormitories on campus. Samples were analyzed for SARS-CoV-2 and viral quantification was determined using qRT-PCR. During the Spring 2021 semester, there was a significant difference in SARS-CoV-2 virus copies in wastewater when comparing dorms with the highest number student cases of COVID-19 and those with the lowest number of student cases, (p = 0.002). Additionally, during the Fall 2021 semester it was observed that when weekly virus concentrations exceeded 20 copies per ml, there were new confirmed COVID-19 cases 85% of the time during the following week. Increases in wastewater viral concentration spurred COVID-19 swab testing for students residing in dormitories, aiding university officials in effectively applying COVID testing policies. This study showed wastewater-based epidemiology can be a cost-effective surveillance tool to guide other surveilling methods (e.g., contact tracing, nasal/salvia testing, etc.) to identify and isolate afflicted individuals to reduce the spread of pathogens and potential outbreaks within a community.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Universidades , Vigilância Epidemiológica Baseada em Águas Residuárias , Teste para COVID-19 , Pandemias/prevenção & controle , Águas Residuárias , Surtos de Doenças/prevenção & controle
5.
mBio ; : e0069324, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38587426

RESUMO

Among genes present in all group A streptococci (GAS), those encoding M-fibril and T-pilus proteins display the highest levels of sequence diversity, giving rise to the two primary serological typing schemes historically used to define strain. A new genotyping scheme for the pilin adhesin and backbone genes is developed and, when combined with emm typing, provides an account of the global GAS strain population. Cluster analysis based on nucleotide sequence similarity assigns most T-serotypes to discrete pilin backbone sequence clusters, yet the established T-types correspond to only half the clusters. The major pilin adhesin and backbone sequence clusters yield 98 unique combinations, defined as "pilin types." Numerous horizontal transfer events that involve pilin or emm genes generate extensive antigenic and functional diversity on the bacterial cell surface and lead to the emergence of new strains. Inferred pilin genotypes applied to a meta-analysis of global population-based collections of pharyngitis and impetigo isolates reveal highly significant associations between pilin genotypes and GAS infection at distinct ecological niches, consistent with a role for pilin gene products in adaptive evolution. Integration of emm and pilin typing into open-access online tools (pubmlst.org) ensures broad utility for end-users wanting to determine the architecture of M-fibril and T-pilus genes from genome assemblies.IMPORTANCEPrecision in defining the variant forms of infectious agents is critical to understanding their population biology and the epidemiology of associated diseases. Group A Streptococcus (GAS) is a global pathogen that causes a wide range of diseases and displays a highly diverse cell surface due to the antigenic heterogeneity of M-fibril and T-pilus proteins which also act as virulence factors of varied functions. emm genotyping is well-established and highly utilized, but there is no counterpart for pilin genes. A global GAS collection provides the basis for a comprehensive pilin typing scheme, and online tools for determining emm and pilin genotypes are developed. Application of these tools reveals the expansion of structural-functional diversity among GAS via horizontal gene transfer, as evidenced by unique combinations of surface protein genes. Pilin and emm genotype correlations with superficial throat vs skin infection provide new insights on the molecular determinants underlying key ecological and epidemiological trends.

6.
Heliyon ; 10(5): e26621, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38434344

RESUMO

Micropatterned structures on the surface of materials possessing biomimetic properties to mimic the extracellular matrix and induce cellular behaviors have been widely studied. However, it is still a major challenge to obtain internally stable and controllable micropatterned 3D scaffolds for bone repair and regeneration. In this study, 3D scaffolds with regular grating arrays using polycaprolactone (PCL) as a matrix material were prepared by combining 3D printing and soft lithography, and the effects of grating micropatterning on osteogenic differentiation of BMSCs and M1/M2 polarization of macrophages were investigated. The results showed that compared with the planar group and the 30um grating spacing group, PCL with a grating spacing of 20um significantly promoted the osteogenic differentiation of BMSCs, induced the polarization of RAW264.7 cells toward M2 type, and suppressed the expression of M1-type pro-inflammatory genes and markers. In conclusion, we successfully constructed PCL-based three-dimensional scaffolds with stable and controllable micrographs (grating arrays) inside, which possess excellent osteogenic properties and promote the formation of an immune microenvironment conducive to osteogenesis. This study is a step forward to the exploration of bone-filling materials affecting cell behavior, and makes a new contribution to the provision of high-quality materials.

7.
Adv Sci (Weinh) ; 11(14): e2305204, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38327127

RESUMO

Hepatocellular carcinoma (HCC) is a highly lethal malignant tumor, and the current non-invasive diagnosis method based on serum markers, such as α-fetoprotein (AFP), and des-γ-carboxy-prothrombin (DCP), has limited efficacy in detecting it. Therefore, there is a critical need to develop novel biomarkers for HCC. Recent studies have highlighted the potential of exosomes as biomarkers. To enhance exosome enrichment, a silicon dioxide (SiO2) microsphere-coated three-dimensional (3D) hierarchical porous chip, named a SiO2-chip is designed. The features of the chip, including its continuous porous 3D scaffold, large surface area, and nanopores between the SiO2 microspheres, synergistically improved the exosome capture efficiency. Exosomes from both non-HCC and HCC subjects are enriched using an SiO2-chip and performed RNA sequencing to identify HCC-related long non-coding RNAs (lncRNAs) in the exosomes. This study analysis reveales that LUCAT-1 and EGFR-AS-1 are two HCC-related lncRNAs. To further detect dual lncRNAs in exosomes, quantitative real time polymerase chain reaction (qRT-PCR) is employed. The integration of dual lncRNAs with AFP and DCP significantly improves the diagnostic accuracy. Furthermore, the integration of dual lncRNAs with DCP effectively monitors the prognosis of patients with HCC and detects disease progression. In this study, a liquid biopsy-based approach for noninvasive and reliable HCC detection is developed.


Assuntos
Carcinoma Hepatocelular , Exossomos , Neoplasias Hepáticas , RNA Longo não Codificante , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , alfa-Fetoproteínas/análise , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Biomarcadores Tumorais/genética , Exossomos/genética , Exossomos/química , Porosidade , Dióxido de Silício , Perfilação da Expressão Gênica
8.
Antibiotics (Basel) ; 13(2)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38391505

RESUMO

Pseudomonas aeruginosa (P. aeruginosa) with multi-drug resistance (MDR) is a major cause of serious healthcare-associated infections, leading to high morbidity and mortality. This opportunistic pathogen is responsible for various infectious diseases, such as those seen in cystic fibrosis, ventilator-associated pneumonia, urinary tract infection, otitis externa, and burn and wound injuries. Due to its relatively large genome, P. aeruginosa has great diversity and can use various molecular mechanisms for antimicrobial resistance. For example, outer membrane permeability can contribute to antimicrobial resistance and is determined by lipopolysaccharide (LPS) and porin proteins. Recent findings on the regulatory interaction between peptidoglycan and LPS synthesis provide additional clues against pathogenic P. aeruginosa. This review focuses on recent advances in antimicrobial agents and inhibitors targeting LPS and porin proteins. In addition, we explore current and emerging treatment strategies for MDR P. aeruginosa, including phages, vaccines, nanoparticles, and their combinatorial therapies. Novel strategies and their corresponding therapeutic agents are urgently needed for combating MDR pathogens.

9.
PLoS One ; 19(2): e0296729, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38335213

RESUMO

BACKGROUND: Rupture of abdominal aortic aneurysm (rAAA) is a fatal event in the elderly. Elevated blood pressure and weakening of vessel wall strength are major risk factors for this devastating event. This present study examined whether the expression profile of mechanosensitive genes correlates with the phenotype and outcome, thus, serving as a biomarker for AAA development. METHODS: In this study, we identified mechanosensitive genes involved in AAA development using general bioinformatics methods and machine learning with six human datasets publicly available from the GEO database. Differentially expressed mechanosensitive genes (DEMGs) in AAAs were identified by differential expression analysis. Molecular biological functions of genes were explored using functional clustering, Protein-protein interaction (PPI), and weighted gene co-expression network analysis (WGCNA). According to the datasets (GSE98278, GSE205071 and GSE165470), the changes of diameter and aortic wall strength of AAA induced by DEMGs were verified by consensus clustering analysis, machine learning models, and statistical analysis. In addition, a model for identifying AAA subtypes was built using machine learning methods. RESULTS: 38 DEMGs clustered in pathways regulating 'Smooth muscle cell biology' and 'Cell or Tissue connectivity'. By analyzing the GSE205071 and GSE165470 datasets, DEMGs were found to respond to differences in aneurysm diameter and vessel wall strength. Thus, in the merged datasets, we formally created subgroups of AAAs and found differences in immune characteristics between the subgroups. Finally, a model that accurately predicts the AAA subtype that is more likely to rupture was successfully developed. CONCLUSION: We identified 38 DEMGs that may be involved in AAA. This gene cluster is involved in regulating the maximum vessel diameter, degree of immunoinflammatory infiltration, and strength of the local vessel wall in AAA. The prognostic model we developed can accurately identify the AAA subtypes that tend to rupture.


Assuntos
Aneurisma da Aorta Abdominal , Ruptura Aórtica , Humanos , Idoso , Aneurisma da Aorta Abdominal/metabolismo , Fatores de Risco , Aorta/metabolismo , Prognóstico , Biomarcadores , Ruptura Aórtica/genética
10.
BMC Cardiovasc Disord ; 24(1): 124, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38408908

RESUMO

BACKGROUND: This study aims to compare the clinical effects of two distinct surgical approaches, namely 3D printing-assisted extracorporeal pre-fenestration and Castor integrated branch stent techniques, in treating patients with Stanford type B aortic dissections (TBAD) characterized by inadequate proximal landing zones. METHODS: A retrospective analysis was conducted on 84 patients with type B aortic dissection (TBAD) who underwent thoracic endovascular aortic repair (TEVAR) with left subclavian artery (LSA) reconstruction at our center from January 2022 to July 2023. Based on the different surgical approaches, the patients were divided into two groups: the group assisted by 3D printing for extracorporeal pre-fenestration (n = 44) and the group using the castor integrated branch stent (n = 40). Clinical indicators: including general patient information, operative time, surgical success rate, intraoperative and postoperative complication rates, re-intervention rate, and mortality, as well as postoperative aortic remodeling, were compared between the two groups. The endpoint of this study is the post-TEVAR mortality rate in patients. RESULTS: The surgical success rate and device deployment success rate were 100% in both groups, with no statistically significant difference (P > 0.05). However, the group assisted by 3D printing for extracorporeal pre-fenestration had a significantly longer operative time (184.20 ± 54.857 min) compared to the group using the castor integrated branch stent (152.75 ± 33.068 min), with a statistically significant difference (t = 3.215, p = 0.002, P < 0.05). Moreover, the incidence of postoperative cerebral infarction and beak sign was significantly lower in the group assisted by 3D printing for extracorporeal pre-fenestration compared to the castor-integrated branch stent group, demonstrating statistical significance. There were no significant differences between the two groups in terms of other postoperative complication rates and aortic remodeling (P > 0.05). Notably, computed tomography angiography images revealed the expansion of the vascular true lumen and the reduction of the false lumen at three specified levels of the thoracic aorta. The follow-up duration did not show any statistically significant difference between the two groups (10.59 ± 4.52 vs. 9.08 ± 4.35 months, t = 1.561, p = 0.122 > 0.05). Throughout the follow-up period, neither group experienced new endoleaks, spinal cord injuries, nor limb ischemia. In the castor-integrated branch stent group, one patient developed a new distal dissection, prompting further follow-up. Additionally, there was one case of mortality due to COVID-19 in each group. There were no statistically significant differences between the two groups in terms of re-intervention rate and survival rate (P > 0.05). CONCLUSION: Both 3D printing-assisted extracorporeal pre-fenestration TEVAR and castor-integrated branch stent techniques demonstrate good safety and efficacy in treating Stanford type B aortic dissection with inadequate proximal anchoring. The 3D printing-assisted extracorporeal pre-fenestration TEVAR technique has a lower incidence of postoperative cerebral infarction and beak sign, while the castor-integrated branch stent technique has advantages in operative time.


Assuntos
Aneurisma da Aorta Torácica , Dissecção Aórtica , Implante de Prótese Vascular , Procedimentos Endovasculares , Humanos , Prótese Vascular/efeitos adversos , Implante de Prótese Vascular/efeitos adversos , Aneurisma da Aorta Torácica/diagnóstico por imagem , Aneurisma da Aorta Torácica/cirurgia , Estudos Retrospectivos , Resultado do Tratamento , Procedimentos Endovasculares/efeitos adversos , Fatores de Tempo , Stents/efeitos adversos , Dissecção Aórtica/diagnóstico por imagem , Dissecção Aórtica/cirurgia , Complicações Pós-Operatórias/terapia , Aortografia/métodos , Infarto Cerebral/complicações
11.
ACS Nano ; 18(8): 6176-6185, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38359155

RESUMO

Nanoplastics from air pollutants can be directly inhaled into the alveoli in the lungs and further enter blood circulation, and numerous studies have revealed the close relation between internalized nanoplastics with many physiological disorders via intracellular oxidative stress. However, the dynamic process of nanoplastics-induced oxidative stress in lung cells under breath-mimicked conditions is still unclear, due to the lack of methods that can reproduce the mechanical stretching of the alveolar and simultaneously monitor the oxidative stress response. Here, we describe a biomimetic platform by culturing alveoli epithelial cells on a stretchable electrochemical sensor and integrating them into a microfluidic device. This allows reproducing the respiration of alveoli by cyclic stretching of the alveoli epithelial cells and monitoring the nanoplastics-induced oxidative stress by the built-in sensor. By this device, we prove that cyclic stretches can greatly enhance the cellular uptake of nanoplastics with the dependencies of strain amplitude. Importantly, oxidative stress evoked by internalized nanoplastics can be quantitatively monitored in real time. This work will promote the deep understanding about the cytotoxicity of inhaled nanoplastics in the pulmonary mechanical microenvironment.


Assuntos
Células Epiteliais Alveolares , Microplásticos , Alvéolos Pulmonares , Pulmão , Estresse Oxidativo
12.
Clin Chim Acta ; 554: 117777, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38220138

RESUMO

BACKGROUND: Due to the difficulty of pathological sampling, the clinical differentiation between benign and malignant biliopancreatic diseases remains challenging. Endoscopic retrograde cholangiopancreatography (ERCP) is used to investigate biliary diseases, enabling the collection of bile. This study assessed potential metabolic alterations in biliopancreatic malignancies by exploring changes in the bile metabolome and the diagnostic potential of bile metabolome analysis. METHODS: A total of 264 bile samples were collected from patients who were divided into a discovery cohort (n = 85) and a validation cohort (n = 179). Untargeted metabolomic analysis was used in the discovery cohort, while targeted metabolomic analysis was used in the validation cohort for further investigation of the differentially abundant metabolites. RESULTS: The untargeted metabolomic analysis revealed that the metabolic changes associated with biliopancreatic malignancies occurred mainly in lipid metabolites, among which fatty acid metabolism was most significantly altered, and differentially abundant metabolites identified in the discovery cohort were mainly enriched in unsaturated fatty acid synthesis and linolenic acid synthesis pathways. Analysis of free fatty acid (FFA) metabolism in the validation cohort revealed that the FFA levels and related indicators verified the abnormal fatty acid metabolism associated with biliopancreatic malignancies. The combined model for biliopancreatic malignancies based on the fatty acid indexes and clinical test results improved the diagnostic performance of current clinical level. Then, we used machine learning to define three different FFA metabolic clusters of biliopancreatic malignancies, and survival analysis showed significant differences in prognostic outcomes among the three clusters. CONCLUSIONS: This study found metabolic alterations in biliopancreatic malignancies based on bile samples, which may provide new insights for the clinical diagnosis and prognostic assessment of biliopancreatic malignancies.


Assuntos
Bile , Neoplasias , Humanos , Metaboloma , Metabolômica/métodos , Ácidos Graxos
13.
Nat Nanotechnol ; 19(4): 524-533, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38172432

RESUMO

Exposure to widely used inert fibrous nanomaterials (for example, glass fibres or carbon nanotubes) may result in asbestos-like lung pathologies, becoming an important environmental and health concern. However, the origin of the pathogenesis of such fibres has not yet been clearly established. Here we report an electrochemical nanosensor that is used to monitor and quantitatively characterize the flux and dynamics of reactive species release during the frustrated phagocytosis of glass nanofibres by single macrophages. We show the existence of an intense prolonged release of reactive oxygen and nitrogen species by single macrophages near their phagocytic cups. This continued massive leakage of reactive oxygen and nitrogen species damages peripheral cells and eventually translates into chronic inflammation and lung injury, as seen during in vitro co-culture and in vivo experiments.


Assuntos
Nanofibras , Nanotubos de Carbono , Oxigênio , Nanotubos de Carbono/química , Fagocitose , Macrófagos , Espécies Reativas de Oxigênio
14.
Adv Sci (Weinh) ; 11(4): e2300806, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37166035

RESUMO

Poor immunogenicity seriously hampers the broader implementation of antitumor immunotherapy. Enhanced immunogenicity capable of achieving greater antitumor immunity is urgently required. Here, a novel polymer that contains hydrophobic ferrocene (Fc) units and thioketal bonds in the main chain, which further delivered a prodrug of oxaliplatin and artesunate, i.e., Artoxplatin, to cancer cells is described. This polymer with Fc units in the nanoparticle can work as a polyigniter to spark the peroxide bonds in Artoxplatin and generate abundant reactive oxygen species (ROS) to kill cancers as nanobombig for cancer therapy. Moreover, ROS can trigger the breakdown of thioketal bonds in the polymer, resulting in the biodegradation of the polymer. Importantly, nanobombig can facilitate the maturation of dendritic cells and promote the activation of antitumor immunity, through the enhanced immunogenic cell death effect by ROS generated in situ. Furthermore, metabolomics analysis reveals a decrease in glutamine in nanobombig -treated cancer cells, resulting in the upregulation of programmed death ligand 1 (PD-L1). Consequently, it is further demonstrated enhanced tumor inhibitory effects when using nanobombig combined with anti-PD-L1 therapy. Overall, the nanosystem offers a rational design of an efficient chemo-immunotherapy regimen to promote antitumor immunity by improving tumor immunogenicity, addressing the key challenges cancer immunotherapy faced.


Assuntos
Antígeno B7-H1 , Compostos Ferrosos , Neoplasias , Humanos , Antígeno B7-H1/metabolismo , Espécies Reativas de Oxigênio , Metalocenos , Neoplasias/tratamento farmacológico , Polímeros
15.
Comput Struct Biotechnol J ; 23: 87-95, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38116074

RESUMO

Despite extensive research on the gut microbiome of healthy individuals from a single country, there are still a limited number of population-level comparative studies. Moreover, the sequencing approach used in most related studies involves 16 S ribosomal RNA (rRNA) sequencing with a limited resolution, which cannot provide detailed functional profiles. In the present study, we applied a combined analysis approach to analyze whole metagenomic shotgun sequencing data from 2035 healthy adult samples from six countries across four continents. Analysis of core species revealed that 13 species were present in more than 90 % of all investigated individuals, the majority of which produced short-chain fatty acids (SCFA)-producing bacteria. Our analysis revealed consistently significant differences in gut microbial species and pathways between Western and non-Western countries, such as Escherichia coli and the relation of MetaCyc pathways to the TCA cycle. Specific changes in microbial species and pathways are potentially related to lifestyle and diet. Furthermore, we identified several noteworthy microbial species and pathways that exhibit distinct characteristics specific to China. Interestingly, we observed that China (CHN) was more similar to the United States (USA) and United Kingdom (GBR) in terms of the taxonomic and functional composition of the gut microbiome than India (IND) and Madagascar (MDG), which were more similar to the China (CHN) diet. The current study identified consistent microbial features associated with population and geography, which will inspire further clinical translations that consider paying attention to differences in microbiota backgrounds and confounding factors.

16.
Angew Chem Int Ed Engl ; 62(51): e202313612, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37909054

RESUMO

The glutathione (GSH) system is one of the most powerful intracellular antioxidant systems for the elimination of reactive oxygen species (ROS) and maintaining cellular redox homeostasis. However, the rapid kinetics information (at the millisecond to the second level) during the dynamic antioxidation process of the GSH system remains unclear. As such, we specifically developed a novel dual-wire nanosensor (DWNS) that can selectively and synchronously measure the levels of GSH and ROS with high temporal resolution, and applied it to monitor the transient ROS generation as well as the rapid antioxidation process of the GSH system in individual cancer cells. These measurements revealed that the glutathione peroxidase (GPx) in the GSH system is rapidly initiated against ROS burst in a sub-second time scale, but the elimination process is short-lived, ending after a few seconds, while some ROS are still present in the cells. This study is expected to open new perspectives for understanding the GSH antioxidant system and studying some redox imbalance-related physiological.


Assuntos
Antioxidantes , Estresse Oxidativo , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio , Glutationa/metabolismo , Oxirredução
17.
Chin J Nat Med ; 21(10): 723-729, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37879791

RESUMO

Many natural products can be bio-converted by the gut microbiota to influence pertinent efficiency. Ginsenoside compound K (GCK) is a potential anti-type 2 diabetes (T2D) saponin, which is mainly bio-transformed into protopanaxadiol (PPD) by the gut microbiota. Studies have shown that the gut microbiota between diabetic patients and healthy subjects are significantly different. Herein, we aimed to characterize the biotransformation of GCK mediated by the gut microbiota from diabetic patients and healthy subjects. Based on 16S rRNA gene sequencing, the results indicated the bacterial profiles were considerably different between the two groups, especially Alistipes and Parabacteroides that increased in healthy subjects. The quantitative analysis of GCK and PPD showed that gut microbiota from the diabetic patients metabolized GCK slower than healthy subjects through liquid chromatography tandem mass spectrometry (LC-MS/MS). The selected strain A. finegoldii and P. merdae exhibited a different metabolic capability of GCK. In conclusion, the different biotransformation capacity for GCK may impact its anti-diabetic potency.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Cromatografia Líquida/métodos , Voluntários Saudáveis , RNA Ribossômico 16S , Fezes/microbiologia , Espectrometria de Massas em Tandem , Biotransformação , Diabetes Mellitus Tipo 2/tratamento farmacológico
18.
J Transl Med ; 21(1): 705, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37814346

RESUMO

BACKGROUND AND AIMS: The increasing prevalence of metabolic and cardiovascular diseases poses a significant challenge to global healthcare systems. Regular physical activity (PA) is recognized for its positive impact on cardiovascular risk factors. This study aimed to investigate the relationship between moderate-to-vigorous physical activity (MVPA), sedentary behavior (SB), and abdominal aortic calcification (AAC) using data from the National Health and Nutrition Examination Survey (NHANES). METHODS: The study used data from NHANES participants aged 40 and above during the 2013-2014 cycle. AAC scores were assessed using the Kauppila scoring system, and MVPA and SB were self-reported. Sociodemographic variables were considered, and multivariable linear regression models were used to analyze associations between MVPA, SB, and AAC scores. Subgroup analyses were conducted based on age, sex, BMI, hypertension, and diabetes. RESULTS: The study included 2843 participants. AAC prevalence was higher in older age groups, smokers, and those with diabetes or hypertension. Lower socioeconomic status was associated with higher AAC prevalence. Individuals engaged in any level of MVPA exhibited lower AAC rates compared to inactive individuals. Not engaging in occupational MVPA (ß = 0.46, 95% confidence interval = 0.24‒0.67, p < .001) and prolonged SB (ß = 0.28, 95% confidence interval = 0.04‒0.52, p = .023) were associated with higher AAC scores. However, no significant associations were found for transportation and leisure time MVPA. Subgroup analysis revealed age and hypertension as effect modifiers in the MVPA-AAC relationship. CONCLUSIONS: This study highlights the potential benefits of engaging in occupational MVPA and reducing SB in mitigating AAC scores, particularly among older individuals and those with hypertension.


Assuntos
Diabetes Mellitus , Hipertensão , Humanos , Idoso , Exercício Físico , Inquéritos Nutricionais , Comportamento Sedentário
19.
Signal Transduct Target Ther ; 8(1): 386, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37806986

RESUMO

Individual variability in drug response (IVDR) can be a major cause of adverse drug reactions (ADRs) and prolonged therapy, resulting in a substantial health and economic burden. Despite extensive research in pharmacogenomics regarding the impact of individual genetic background on pharmacokinetics (PK) and pharmacodynamics (PD), genetic diversity explains only a limited proportion of IVDR. The role of gut microbiota, also known as the second genome, and its metabolites in modulating therapeutic outcomes in human diseases have been highlighted by recent studies. Consequently, the burgeoning field of pharmacomicrobiomics aims to explore the correlation between microbiota variation and IVDR or ADRs. This review presents an up-to-date overview of the intricate interactions between gut microbiota and classical therapeutic agents for human systemic diseases, including cancer, cardiovascular diseases (CVDs), endocrine diseases, and others. We summarise how microbiota, directly and indirectly, modify the absorption, distribution, metabolism, and excretion (ADME) of drugs. Conversely, drugs can also modulate the composition and function of gut microbiota, leading to changes in microbial metabolism and immune response. We also discuss the practical challenges, strategies, and opportunities in this field, emphasizing the critical need to develop an innovative approach to multi-omics, integrate various data types, including human and microbiota genomic data, as well as translate lab data into clinical practice. To sum up, pharmacomicrobiomics represents a promising avenue to address IVDR and improve patient outcomes, and further research in this field is imperative to unlock its full potential for precision medicine.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Microbioma Gastrointestinal , Microbiota , Humanos , Medicina de Precisão/métodos , Microbiota/genética , Microbioma Gastrointestinal/genética , Farmacogenética
20.
Heart Surg Forum ; 26(4): E363-E371, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37679083

RESUMO

BACKGROUND: To compare the outcomes of two Thoracic Endovascular Aortic Repair (TEVAR) techniques of Left Subclavian Artery (LSA) reconstruction for Stanford Type B Aortic Dissection (TBAD) patients with undesirable proximal anchoring zone. METHODS: We retrospectively reviewed 57 patients with TBAD who underwent either three dimensional (3D)-printing-assisted extracorporeal fenestration (n = 32) or conventional extracorporeal fenestration (n = 25) from December 2021 to January 2023. We compared their demographic characteristics, operative time, technical success rate, complication rate, secondary intervention rate, mortality rate, and aortic remodeling. RESULTS: Compared with the conventional group, the 3D-printing-assisted group had a significantly shorter operative time (147.84 ± 33.94 min vs. 223.40 ± 65.93 min, p < 0.001), a significantly lower rate of immediate endoleak (3.1% vs. 24%, p = 0.048) and a significantly higher rate of true lumen diameter expansion in the stent-graft segment (all p < 0.05), but a significantly longer stent graft modification time (37.63 ± 2.99 min vs. 28.4 ± 2.12 min, p < 0.001). There were no significant differences in other outcomes between the two groups (p > 0.05). The degree of false lumen thrombosis was higher in the stent-graft segment than in the non-stent-graft segment in both groups and the difference was statistically significant (X2 = 5.390, 4.878; p = 0.02, 0.027). CONCLUSIONS: Both techniques are safe and effective for TBAD with an undesirable proximal landing zone. The 3D-printing-assisted extracorporeal fenestration TEVAR technique has advantages in operative time, endoleak risk, and aortic remodeling, while the traditional extracorporeal fenestration TEVAR technique has advantages in stent modification.


Assuntos
Dissecção Aórtica , Endoleak , Humanos , Estudos Retrospectivos , Dissecção Aórtica/diagnóstico , Dissecção Aórtica/cirurgia , Aorta , Impressão Tridimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...